题意:LIS最长递增子序列 O(nlogn)
分析:设当前最长递增子序列为len,考虑元素a[i]; 若d[len]<a[i],则len++,并使d[len]=a[i]; 否则,在d[1~len]中二分查找第一个大于等于a[i]的位置j,使d[j]=a[i]。附上打印路径代码(准确性未知)
代码:
#include#include #include #include using namespace std;const int N = 1e5 + 10;const int INF = 0x3f3f3f3f;int a[N], d[N], pos[N], fa[N];int n;void LIS(void) { int len = 1; d[1] = a[1]; fa[1] = -1; for (int i=2; i<=n; ++i) { if (d[len] < a[i]) { d[++len] = a[i]; // pos[len] = i; fa[i] = pos[len-1]; } else { int j = lower_bound (d+1, d+1+len, a[i]) - d; d[j] = a[i]; // pos[j] = i; fa[i] = (j == 1) ? -1 : pos[j-1]; } } printf ("%d\n", len); // vector res; int i; // for (i=pos[len]; ~fa[i]; i=fa[i]) res.push_back (a[i]); // res.push_back (a[i]); // for (int i=res.size ()-1; i>=0; --i) printf ("%d%c", res[i], i == 0 ? '\n' : ' ');}int main(void) { while (scanf ("%d", &n) == 1) { for (int i=1; i<=n; ++i) { scanf ("%d", &a[i]); } LIS (); } return 0;}